Context Dependency in Neural Network Based Acoustic Models
نویسندگان
چکیده
Our recent experiments with Gaussian mixture (GMM) based acoustic models have shown that employing context dependent acoustic models, namely triphones, can greatly improve recognition accuracy [1] in comparison to systems based on context independent units. Significant portion of our research has been aimed at exploring the possibilities of neural networks as acoustic models for speech recognition. We have observed, that a neural network can lead to similar recognition accuracy as a GMM acoustic model, while having less trainable parameters [2]. Neural network acoustic model have other interesting properties, such as context sensitivity, the ability to use several subsequent speech frames as an input and thus providing some context information [3].
منابع مشابه
Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کاملAcoustic Modeling in Statistical Parametric Speech Synthesis – from Hmm to Lstm-rnn
Statistical parametric speech synthesis (SPSS) combines an acoustic model and a vocoder to render speech given a text. Typically decision tree-clustered context-dependent hidden Markov models (HMMs) are employed as the acoustic model, which represent a relationship between linguistic and acoustic features. Recently, artificial neural network-based acoustic models, such as deep neural networks, ...
متن کاملFunctional Models of Selective Attention and Context Dependency
This workshop reviewed and classified the various models which have emerged from the general concept of selective attention and context dependency, and sought to identify their commonalities. It was concluded that the motivation and mechanism of these functional models are "efficiency" and ''factoring'', respectively. The workshop focused on computational models of selective attention and conte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007